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Introduction

Overall progress during this period has been quite satis-

factory. A few problems were encountered but they have not caused

any serious delay. The graduate student who was employed on the

experimental phase of the program received an offer of a position

that he could not refuse. As a result he has left the Ohio State

University causing a slowdown in the experimental work. Because of

this, the effort to prepare a paper on stresses in the presence of

mixed boundary conditions, which requires the experimental data, has

been delayed and the task of beginning a parametric study of flutter

with thermal stresses and mode coupling has been moved up. Rising

costs coupled with the fixed resources of the Grant has forced the

principle investigator to reduce his release time for the project to

only six percent as of I October 1969.

The work to be accomplished for the period i July to 31 December

was outlined in the Research Plan dated 29 August 1969. Briefly

stated, it and the projected manpower were as follows:

a. Conduct a two phase experimental program to,

I. Measure the thermal strains in the vicinity of the root

of both a rectangular and a triangular cantilever plate

and compare to analytical strains when the measured tem-

perature is used in the calculations.

2. Relate quantitatively the dynamic response to initial

deformation.

Manpower: one student, i/2 time, i July-30 September

1/4 time, 1 October-31 December
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Conduct a parametric study of thermal buckling eigenvalues

and vibration eigenvalues for symmetrical tapered plates of

constant thickness.

Manpower: one student, 1/3 time, I July-30 September

Prepare a technical report on the stress analysis work of

1 April-30 June, based on the previous Progress Report,

dated 29 July 1969.

Manpower: one student, 1/3 time, 1 October-31 December

Study the effect of variable thickness on the stress distri-

bution in thermally stressed, symmetrically tapered plates.

Manpower: one student, 1/4 time, 1 October-31 December

The progress on each task follows:

The Experimental Program

i. Thermal Stress: Strains have been obtained for a

rectangular plate that verifies the previously obtained

analytical solution along the free edge of the plate•

A one-quarter inch thick aluminum plate was clamped

between two steel bars of 2" x 2" cross section• Al-

though it is virtually impossible to achieve completely

the condition of zero strain in the chordwise direction

at the root, sufficient constraint did exist to verify

the shape of the stress curve. The results of three

separate tests are shown in Figure I. The temperature

distribution obtained in these steady state tests is
I

shown in Figure 2. Other tests, not included herein,

show that the root stresses vary, as expected, with heat

soak time. As the steel bars heat, they expand and
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relieve the root stresses. This occurs very slowly,

however, so that steady state conditions can be

assumed for any given reading. The location of thermo-

couples and strain gages is shown in Figures 3 and 4.

Similar data are desired for a triangular plate.

Initial Deformation and Dynamic Response: Initial

deformation and frequency data have been recorded for

several plates. The minimum frequency in every instance

has been observed to decrease as the initial deflection

increases Just as the theory predicts. The equations for

quantitatively relating measured initial deflections to

the measured frequency are shown in Appendix I. A major

problem in this area is to obtain the temperature distri-

bution from which the buckling eigenvalues may be calculated

in the case of rapid heating. Steady state temperature

recording is available but transient temperature measuring

equation is not available in sufficient channels to pro-

perly define the temperature distribution. An indication

of how important the temperature distribution may be is

shown in Figures 5 and 6 from data obtained in AAE 710, the

fifth year laboratory course. In Figure 5, both the torsion

and bending frequencies are shown vs. AT with a plot of

AT vs. time. AT is the difference between the temper-

atures at the plate edge and the plate center. It is
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indicative of the thermal gradients but does not reflect

the changing temperature distribution as heat is con-

ducted through the plate. The plate was 16.67 inches in

length with a I0" chord. In the post buckled region its

deflected shape was observed to be as shown.

\

Not to Scale

i Shape

\

\

Bending Buckling

No visually detectable

wist

'b.t I"

The bending frequency is seen to be very sensitive to

the initial temperature distribution as indicated by the

2
initial non-linearity of the (_/_o)B curve; but when

the large bending deflections occur as sketched, the

bending frequency increases while the torsion frequency

levels off. Note that the torsion response is not too

sensitive to the changes occurring in temperature distri-

bution as reflected by its relative linearity up to

bending deformation.
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In Figure 6 is presented the same information for the

same plate except that 6.67 inches was carefully re-

moved from the end, leaving a square plate, thus chang-

ing both the _oB/_oT and ATB/ATT ratios. In the post

buckled region, its deflected shape was observed to be

as shown:

Not to Scale

\

Initial Shape
\

"- I_ O = 021 °" ,I i "
" il

!

"\ 4.
\ x"_-. il

\

Torsion Buckling

No visually detectable

_\_ bending

\\

"_... _/

\ - .. _,

In Figure 6, the same sensitiveness of the bending

mode and insensitiveness of the torsion mode to the

temperature distribution will be noted. However, the

torsion frequency will now be observed to increase,

while the bending frequency levels off. This is as

predicted by the coupled mode theory when ATB/AT T

increases. The bending mode response indicates that
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Do

Ei_envalues for Tapered Symmetrical Plates of Constant

It may be necessary to calculate the buckling eigen-

values at each point in time when the temperature

distribution has changed. If the buckling eigenvalues

should be relatively insensitive to the temperature

distribution, a considerable reduction in the calcu-

lations for flutter would result.

Parametric Stud_ of Frequencies and Thermal Buckling

Thickness

This phase for nine term deflection functions and a sixteen

term stress function has been completed. The results pro-

vide information about the bounds for frequency ratios and

buckling eigenvalue ratios that are needed for the para-

metric study of flutter. The frequency data are presented

in Table I. Plotting the frequency ratios indicates that,

for a cantilever plate, the minimum value of _oB/_oT

approaches unity as the plate aspect ratio approaches zero;

i.e., the second mode frequency is never less than the first

mode. This is contrary to our experience with cantilever

beams where it is well known that the bending frequency may

exceed the torsion frequency. The importance of the fre-

quency ratio as an influence on the mode coupling is shown

in Appendix II of the attached revised paper, "Modal Coupling

in Thermally Stressed Plates". An error in subtraction in

the original paper covered up the fact that mode coupling is



affected by the frequency ratio as well as the buckling

eigenvalue ratio. For plates of relatively large aspect

ratio s i.e., greater than unity, the frequency ratio,

_oB/_oT, is small and may be taken as zero. However, for

small aspect ratios, _oB/_oT appears to approach unity and

cannot be neglected. One set of parametric curves for all

platesj for which the ratio of first mode thermal buckling

to second mode thermal buckling is_ ATB/ATT _ i.I, and the

initial imperfection parameters are, @i = .I, and _i = .02,

is shown in Figure 7. Note that the frequency ratio, which

is a function of the planform shape, thickness distribution,

material properties and boundary conditions, can have a

marked effect on the post buckling behavior of plates. These

effects have not been noticed in the laboratory because the

plates tested to date have all had very small values of

_oB/_oT. Further investigation, both analytically and

experimentally, is indicated.

The thermal buckling eigenvalues are presented in Table II.

Figure 8 shows a typical plot of the assumed temperature

distribution used in the calculations. In all cases, the

temperature was assumed such that the isotherms were parallel

to the plate edges. Since the eigenvalues are functions of

the temperature distribution, eigenvalues for other temperature

distributions have been evaluated but are not included in

this report. They indicate that, although the individual
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eigenvalues may change considerably, their ratio (the im-

portant parameter) does not vary appreciably as the form

of the temperature surface changes. The temperature dis-

tributions investigated do not include any that would be

similar to that existing in the initial part of rapid heat-

ing discussed under item a.2. At this time, it appears that

the 9-term deflection function for symmetrical bending may

not be sufficient to define the bending buckling mode for

all aspect ratios and tapers. A 15-term solution was used

in a few cases to assure that the 9-term solution is ade-

quate. The 9-term solution for vibration had previously

been favorably compared to both solutions in the literature

as well as experimental data. The buckling eigenvalues ob-

tained when 15-term deflection functions were used are shown

for comparison to the 9-term answers:

Terms KB KT rB/p T

AR = .75, B = I 9 45.989 41.049 1.1203
15 45.368 40.973 1.1072

AR = 1.67, B = i 9 558.04 501.4 1.113
15 531.52 499.07 1.065

AR = 2.0, B = i 9 1110.5 928.67 1.1958
15 971.16 927.07 1.0476

B _ .4 9 3024.5 2970.6 1.018
15 71.157 2944.7 .02416

= 0 9 4946.2 4953.0 .9986
15 131.37 4900.4 .0268
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The values shown indicate that the buckling eigenvalues

are probably sufficiently close for B = I up to an aspect

ratio of two. But as _ decreases for an aspect ratio of

two, the bending buckling eigenvalue decreases drastically.

More work is to be done in this area. The difficulty may

very well be two-fold: i) the eigenvalue subroutine may be

breaking down because the mid-plane energy matrix becomes

ill-conditioned and/or 2) although observation of experi-

mental buckling deformations shows that the torsion buckling

mode does not differ appreciably from the torsion vibration

mode, page 5, the bending buckling mode appears to differ

considerably from the vibration bending mode in both the

degree of chordwise deformation and in the degree of bending,

page 4, thus requiring higher order terms in the assumed

solution. It may be of interest to note the savings in com-

puter time as a result of formal integration of the matrix

elements. Using nine term deflection functions and a six-

teen term stress function, the present program on the IBM 360

will produce nine symmetrical (bending) vibration modes and

frequencies, nine symmetrical buckling modes and eigenvalues

and nine antisymmetrical (torsion) vibration modes and fre-

quencies and nine antisymmetrical buckling modes and eigen-

values in 1.2 minutes. For comparison, a similar program,

using numerical integration, on the IBM 7094, to produce one

bending vibration mode and frequency, one bending buckling
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mode and eigenvalue, one torsion vibration mode and fre-

quency, and one torsion buckling mode and eigenvalue,

requires 43.08 minutes.

c. Stress Analysis Report

The work scheduled for this task has been replaced by work

noted below that was originally scheduled to begin 1 January

1970.

The parametric study of flutter in the presence of thermal

stresses: The equations have been derived and a computer

program written whereby regions of stability may be pre-

dicted for various combinations of parameters. The pro-

gram has been 'debugged' and work on the parametric study

has started. Further definition of the bounds of some of

the parameters is needed to avoid making runs into physically

impossible regions. It is expected that more detailed work

and research into the linear problem may lead to a suitable

definition of the parameter bounds. The equations and a

sample of the results to date are given in Appendix II.

d. Effect of Variable Thickness on Stress Distribution

Problems have been encountered in the formal integration

of the matrix elements for this work. The thickness func-

tion appears in the denominator of one integrand and al-

though formal integration can be accomplished, it will save

little computer time because of the many additional calcu-

lations that must be made; e.g., a linear thickness variation
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of the form, t = ax + by + c, would require an order of

magnitude times as many calculations for each matrix element

as is required for the constant thickness plate. In view

of the fact that the matrix elements for both variable thick-

ness and non-symmetrical planforms can be computed in the

same time as that required for constant thickness plates of

symmetrical planform by numerical integration, the numer-

ical integration scheme becomes more than competitive for

plates in general. A program for symmetrical plates of

constant thickness has been written and successfully used

with the IBM 7094 Computer to check the results of the

IBM 360 program where formal integration was used. That

program is presently being adapted to the IBM 360 where it

is expected that each set of eigenvalues for either uniform

or non-unlform plates will require about ten minutes of com-

puter time. The program is now ready for a final check run.

Once it is operational, it may also be applied directly to

accomplish that part of the work scheduled for I January 1970

to 30 June 1970 pertaining to the thermal buckling and

vibration eigenvalues of non-unlform plates.

Conclusion

Although operating costs have increased, considerably pro-

gress has been made during this report period, especially in view

of the loss of one graduate student and the necessity for a

reduction of participation time for the principal investigator.
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A block diagram of the problem, showing the relationship of the

different facets on which work is being accomplished, is shown

in Figure 9. Each block represents an independent problem, once

the inputs into the block are known. Thus parametric studies

may be conducted at any point; but, when an explicit lifting sur-

face structure and flight profile are specified, then the solution

must proceed in an orderly fashion from temperature input to

aeroelastlc output.

All work to date has used an assumed temperature distribu-

tion or a temperature distribution obtained from experiments

with radiant heat lamps. We still intend to prepare a report on

the thermal stress distribution in cantilever plates but some

additional work in this area is also required.

At present, the different facets of the problem are being

attacked separately. Ultimately, it is expected that all of the

computer programs will be unified into one single program to yield

answers to both static and dynamic aeroelastic phenomena for any

applicable set of inputs.
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The total enerEy of a plate mzy be expressed as the energy of

the _erfect plate plus the chanze in enersy _ue to arbltr_ry In[tl,al

deflections as follows: _

,f<)"_ 'x'-7

,+ "(_l- t- z'v Y" --.- fz )w,

-0t- 7: W,,.dz.d_.

7_
'C'

'_ bee #a£e '7 of the att, ache,_ [s'_#e#, },_o,_&l Coupltn_ _L_ Thermally
Stressed _l_tes".



Assuming :_-to be a linear colzbinatlon of the small deflection

modes as in the attached paper and following the definition of terms

and ptocedur.es of that paper gives frequency equations and static

deflection equations of the same form as in that paper,:

-I C_t _

- "Fo +_;

_Z r_

Except that now,

C,-,-F+3 +g r, t

L %. P, L/L _ S,..
T "_'- < r:

whe re,

Z,_ - , _z"k?7 1-_

Y;- -4

?,#.k?/lz_75: Y-Jy
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....... d_g
axa,¢ _'

.-£ _y', _g, .-/..... ) _ _7_-

A comparison of these equations with those of the attached

report shows that:

z, 3- P,_,_-_¢._: .
12 , 13 , 1 6 , a_d 17 are as defined In the attached paper.

The application of the theory to arbitrary Im_errectlons alay

be evaluated by the following steps:

i. Measure the initial shape of a plate.

2. Obtain the frequency at some measured temperature distribution

and magnitude.

3. Obtain the buckling eigenvalues for the perfect plate,_ and _

using the temperature distribution at _hich the frequency

was measured. At th_s time, all integrals involved In the

linear solution may be evaluated.

4. Evaluate Ill and I12 from the measured shade data mnd perfect

plate modes.

5. Evaluate_i and _g from their definitions.

7. Use Ill , I12 , and I13 In the non-linear equations to



calculate the frequency response for the temperature masnltude

at which the frequency was measured.

8. Compare analytical with experimental _esults.
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Modal Coupling in Thermally Stressed Plates *

Cecil D. Bailey

The Ohio State University, Columbus, Ohio

Abstract

An approximate, but general, solution for the frequencies,

thus the effective stiffnesses, in the first and second modes of

initially deformed, thermally stressed plates of any p!anform

shape and with any boundary condition is found in terms of quan-

tit_l.es that may be obtained from the application of linear theory.

It is shown that all plates exhibit the sanle characteristic

changes in frequency, thus stiffness, independent of planform

shape, b_'undary conditions and temperature distributic:_ except as

these factors affect the thermal buckling eigenvalues (hT crit-

ical) and the natura!_ uniform tempe_ature frequemc'es. Coup].ing

between the modes is shown to depend upon the ratio of the tl_ermal

buckling elgenvalues aud the uniform temperature frequency ratio.

Analytical data are presented to show that the second mode stiff-

ness for a plate for certain values of the parameters does not

always increase in the post buckled region as implied in the liter-

ature. Experimental data, obtained from cant'Llever plates of

different planforms, are presented to show that mode coupling is

_Suppo_.ted in part by the Air Force Institute of Technology and by

the Office of Aerospace Research_ USAF.



readily detected and cannot be neglected if a correct prediction

of the effective stiffness of a plate is desired. The analysis

may readily be extended to any desired number of modes. Only a

qualitative comparison is made between theory and experiment in

this paper. A carefully controlled test program will be required

to produce data for a quantitative comparison.
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List of Symbols

Normal coordinate for the first mode

Large deflection stress function parameter

Plate stiffness, Et3/12(!-v 2)

ModuJus of elasticity

Large deflection stress function

Small defl_ction stress function

Definite integrals involving functions WI, W2 and G

Work done by the stress over that part of the

boundary on which the displacements are prescribed

Temperature distribution over the surface of the

plate

Reference temperatur_ at which buckling in first

mode occurs

Reference temperature at which buchling in second

mode occurs

t Plate thickness



w

U, V

W

B,

W

W i

W I

W2

Z

P(x,y,_)

r

r2

0

Displacement in the x and y directions respectively

on that part of the boundary where the displacements

are prescribed

Total displacement of elastic surface from the x_y

plane

Second derivative _ith respect to time

Initial displacement of elastic surface from the

x,y plane. Also called initial imperfection and/or

initial deformation.

First mode from linear solution

Seco_d mode from linear solution

Sum of forces per un.it area. normal to the plane of

the plat_'_, P(x,y,_) - p tW

Applied load over plate surface

Thermal coefficient of expansion

Energy due to heating or thermal loading

fftaT(_ + )dxdy

Value of F at which the perfect, unloaded plate

would buckle in the first mode

Value of F at which the perfect, unloaded plate

would buckle in the second mode

Small amplitude dynamic displacement of first mode

Small amplitude dynamic displacement of second mode

Normal coordinate for second mode



Poisson's ratio -.

Density per unit volume

T Time

Non--dimensionalized normal coordinate for second

mode

Non-dimensionalized normal coordinate for first

mode

Non°-dimensional large static deflection, second
. I

mode

Non-dimenslonal large static deflection, first

mode

Frequency of small amplitude vibration about large

amplitude static _quiiibrium position

First mode, free vibration frequency, at uniform
_o I

temperature

_o2 Second mode, free vibration frequency, at uniform

temperature

Introduction

Heldenfels and Vosteen 2 showed that the second mode (tor-

sional) frequency and stiffness of a thermally stressed square

cantilever plate always increases after reaching some minimum

value as the temperature increases. The minimum stiffness is

dependent upon the initial deformation. The solution obtained is

shown in Figure I, where the parameter _i is a measure of the



initial twist in" the plate. They tested a square cantilever

plate which had initial deformation in both the first and second

modes. The plate and its initial shape are shown in Figure 2.

Their p].ot of experimental data which verified their analytical

solution is shown in Figure 3.

Breuer 4 verified the results of Heldenfels and Vosteen and

extended the solution to plates of other aspect ratio.

Bailey B extended the analytical results of Heldenfels and

Vosteen and showed that their solution for the second mode is

also the solution for the first mode when the two modes are

uncoupled. It can readily be shown by use of the theory of

orthonormal functions that it is the solution for any uncoupled

mode. Iio',:ever, in conJucting an experimental investiga_io_ of

tapered plates in the pre-buck!ed region, _t was noted that in

those instances when the heat was left on longer than usual, the

second mode frequency did not increase after reaching a minimum

but leveled off, indicating that the stiff chine effect as recorded

by others was not present. The fully tapered plate was the only

exception. No attempt was made to explain the cause of this

phenomena until more recent work was accomplished. That work is

reported herein.

The termino!ogy, first and second modes, is used to imply the

generality of the solution to both symmetrical and unsymmetrical

plates. 'Bending' and 'torsion' could be used_ but these terms



apply, in a strict sense, to symmetrical plates where in linear

theory the symmetrical' (bending) and antisymmetrical (torsion)

deflections are completely uncoupled. For an unsymmetrical plate

in linear theory and for all plates in non-linear theory, all

modes are plate bending modes containing both symmetrical and

antisymr_e t_'ical deflections.

Statement of the Problem and Basic Equations

Given an initially deformed plate of any p!anform shape,

boundary conditions_ and thickness distribution (provided the

thickness distribution permits the assumption of thin plate

theory), find the frequency, thus the effective stiffness, when

the plate is subjected to thermal stress and large deflections.

It is further assumed that the linear solutions to the sinai]

deflection problem of the perfect plate for specified boundary

conditions, thickness distribution and planform shape are known.

(By linear solutions is meant the small deflection solution to

the vibrations proble_ when no thermal stresses are present, and

the solution to the in-plane thermal stress problem when no

displacements normal to the plane are present).

Since there is no exact solution to the differential equa-

tions of this problem, an approximate solution is obtained by
]

using Reissner's Variational Principle for large deflections:
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In the application of this minimal energy principle the

generality of the large deflection solution obtained is a result

of the orthonormal functions chosen for the deflection function.

_lh._ofunctions must be assumed: the deflection function_ W, and

the stress function, F.

The deflection function is assumed to be,

where

W(x,y,_) = B(_)Wt(x,y) + 0(_)W2(x,Y)

Wl(X,y) and W2(x,y) are the first and second buckling or



vibration modes, as determined from the linear solution of what-

ever plate problem happens to be prescribed. Thus, these func-

tions are orthogonal and satisfy the plate displacement boundary

oonditions. B and g are undetermined parameters, in this case

normal coordinates, for the modes W I and W 2. Although it is

arbitrary, W i, the initial displacement, is taken to be the same

functional form as the large deflection mode,

wi(x,Y) = Bi Wl(x'Y) + el W2(x'Y)

B i and gi are the measured amplitudes that define the magnitude of

the initial disp]ocement.

The stress function for large deflections is assumed to be

F = C(_) G(x,y)

where G(x,y) is the stress function obtained from a linear solu-

tion of the stress distribution; thus, it satisfies the stress

boundary conditions for whatever planform shape the plate may have.

C, B, and C are undetermined parameters that must be found from

the application of Reissner's variational principle.

Substitution of the assumed functions into the variational

equation yields three equations in the three unknowns:

14g + (s-Si) + c S = --- (1)
1 Ii II

5



+ _5(0 - 0 i) + C 15 = 15
(2)

I"
c I-3-(__ 2) + zT(Q_ _) ;].o

= _ B i - 0i
19 z 9 19 z 9

where, the I

tion of definite integrals in the linear solution.

(3)

i _ i = l, .... , 9, are numbers obtained from evalua-:

These

integrals are given in Appendix I. Ii0 is known from the pre-

scribed boundary conditions and is taken to be zero in this paper.

Substitution of the third equation into the first two yields

two equations from which B and 0 may be determined. From these

equations it may be noted that no coupling exists unless large

deflections are present.

12

ii [ 1219 1219 1 i219

IBII0] + 12.... -3 B 3

I2I 9 ] IiI 9

14 12

(4)

17 1 2+ oI6rl r
15 [ I6I 9 I6I q

8_ + I3-17(B2 2)
z 6-z9- - Bi

2 i8 i6
I7Ii0 ': I7__. e 3

i61--9--i + =_ +--e iI5I 9 15 15

.(5)

As a result of the choice of assumed functions_ a.n examina-

tion of the linear equations will. show that for Ii0 = 0 (Reference

2, 3, or 4):



I219 _

13
Flcritical

, the first mode, uniform temperature free

vibration frequency.

, the first mode, uncoupled, unloaded, perfect

plate thermal buckling parameter for the

I619 _

17

14 -B

12 o

F2critical

prescribed temperature distribution.

, the first mode deflection under any applied

load normal to the plate surface.

, the second mode, uniform temperature free

vibration frequency.

, the second mode, uncoupled, unloaded,

pe]_fect plate thermal buckling parameter for

the prescribed temperature distribution.

, the second mode deflection unler the applied

load normal to the plate surface.

Now divide equations (4) and (5) by 12/1 1 and 16/15 respectively,

make the foregoing substitutions followed by the fol]owing

coordinate transformations:

_2 _ 13_ _B 2

FI

_2 = h 0 2
F 2

The resulting equations are:

10



[ r
_2 Pl
°1

"¢_ + _(¢ - ¢i ) + _ = ¢o + ¢i

_02 F2 0i + 2 ) I0

, (6)

+ ¢' = ¢o + ¢i " (7)

When the displacements over that part of the boundary where

the displacements are prescribed are zero, the integral llo = 0.

Other wise, it is seen that prescribing boundary displacements

will cause the same trend of stiffening as prescribing F, _i' or

¢i"

It is possible that 14, 1 8 , and Ii0 as well as P may, any

one or all, be functions of time, in which case the problem wou]d

be a large amp].itude vibration problem under, at most, four

different forcing functions.

The assumption is now made that 14, I8, and Ii0 are not

functions of time and that the rate of change of the displace-

ments as a result of the rate of change of F with time is

sufficiently slow that the deflections caused by temperature may

be treated as a statics problem. Thus, under heat input in the

plane of the plate and load normal to the plane, the plate may

undergo large static deflections about which smal], amplitude

dynamic oscillations may occur. The square of the frequency of

these oscillations is a direct measure of the effective stiffness

in the mode and at the displacement under investigation.



To find the frequency of the small amplitude oscillations

(see Appendix II) let,

¢ = e¢+ ¢

Substitution of these quantities into equations (6) and (7)

produces t.wo equations for the frequencies when (_001/¢02)2 << I,

i___l 2 F 2 r ¢2 II0
= + 3_'2 - _i + "_2( ¢_) _

1 l rl rl . __,%bJOI
(8)

2 F

o F2

Sin_e _,j._ ¢i" F, and IlO are specified quantities> it is only

necessary to find _.%and _' in order to calculate the frequencies.

Setting the inertial terms equal to zero in equations (6) and (7)

yields the static deflection equations,

F I"2 Ii0 ] •_3 + _, i Y--_ ¢_ + y_(¢2 2- - ¢i ) + _i (io)

F F1 2 II0
¢3 + ¢ i 2 + (_

r2 ¢i -_'_)-E_ = ¢o + ¢iF2
•&. -2 j

Therefore, the problem reduces to that of finding ¢ and

(ll)

from the above two equations and then substituting these results

into equations (8) and (9) to get the effects on frequency and

stiffness. Note that the ratio of the thermal buckling eigenvalues,



r2/r I (or, AT2/A[fl, see Appendix III) determines the degree of

coupling for the large amplitude, static deflections. Both the

thermal buckling eigenvalue ratio and the uniform temperature

frequency ratio, _oi/_o2, influence the degree of coupling in the

frequency equations. In equations (8) and (9) the frequency

-" _ thus its influence on the
ratio, _oi/_o2, has been assumed om_l,

coupling has been omitted. A parametric study has been made of

equations (8), (9), (10) and (ii) for values of thermal loading

ratio, I'/F2, from 0 to 2.0 and for various combinations of the

parameters, FI/F 2 = ATI/AT 2, @i' and _'i' with Ii0 : 0.

It was found from the parametric study that for ATI/AT 2

sufficiently greater than unity, the second.mode frequency

always ipereases after reaching a minimum as pred_:_ted in

Reference 2. However, it was also found that the first frequency

levels off after reaching a minimum regardless of the magnitude

of the initial deflections, _i and @i" But it was also found

that for ATI/AT 2 sufficiently less than unity, the first mode

frequency always increases after reaching a minimum while the

second mode levels off at a rninimum, again independent of the

magnitude of the initial deflections.

The interesting results occur when ATI/AT 2 is sufficiently

close to unity. For ATI/AT 2 = 1 the relative magnitude of the

initial displacement parameters control which mode increases and

which levels off, although it is possible that both may increase.

_3



For ATI/AT 2 sufficiently close to unity, the ratio of ATI/AT 2

combined with 'Pi and @i determines the frequency response. The

effect of a_Ol/_O2 remains to be investigated.

A qualitative comparison of parametric study results with

experimental frequency data for AT1/AT 2 in the neighbo_nood of

unity is shown in the following figures.

The experimental data recorded at the A_r Force Institute of

Technology are shown in Figures 4, 5, 7, and 8. _i and ¢i are

not known, but the ratio AT1/AT 2 for the rectangular plate, Fig.

4, was calculated as 1.029. Note that the first mode frequency

increases while t!_e second mode frequency l_-_vels off. Figure 5

shows the sam_ phenomena for a slightly tapered plate.

F:gure 6 sho'_.,_sthe parametric response for the coupled first

and second modes of a plate for which,

AT1
- 1.0, ¢i = 0.02, ti = 0.iAT2

= 4o = Ii 0 = 0, (_0oi/_0o2)2 << i

The first mode frequency increases after buckling while the

second mode levels off, Just as in the experiment.

Figure 7 and Fig. 8 show the experimental results for _ighly

tapered plates of the same aspect ratio and thickness as the prev-

ious plates. The calculated values of ATI/AT 2 > I.I are shown in

the figures. For these plates, the second mode frequency

increases in the conventional manner while the first mode levels

off. Again, _i and ¢i are not known for the plates although no



initial deformation was discernable by visual inspection.

Figure 9 shows that for ATI/AT 2 = I.I, the analytical

response has the same trend as the experimental data when the

initial imperfections are very small. It should be noted that

the initial slope of the frequency response curves is affected

by the i:_itial deflection. Therefore, extrapolation of experi-

mental data to obtain AT1 and AT2 may lead to erroneous results.

A comparison of theoretical to experimental results from

Reference 2 is shown in Figure 3. The theoretical curve does

not contain any efCect of initial _eformation in the bending

mode, although the initial plate shape, Figure 2_ indicates

quite large bending and camber. Thus, the effect of finite _i

is present in the experimental Sara.

Figure I0 shows two curves for ATI/AT 2 = I.i. The dashed

curve is for _i = 0.06 (about the correct value), and _i = 0,

which would be representative of the analytical curve in Figure 3.

The solid curve in Figure I0 occurs when ¢i = 0.2 and would be

representative of the experimental curve in Figure 3 which may

explain in part the disagreement between experiment and theory

in Reference 2.

Conclusions

Both experimental and analytical data indicates strong

couplin£_ between the first two modes of plates with in-plane

stresses. The onset of significant coupling varies with the

IY



initial imperfections and with the ratio of in-plane buckling

parameters, ATI/AT 2.

For _oi/_)o2 sufficiently small, the post buckling behavior

of plates for which ATI/AT 2 _ I, is determined by the ratio

ATI/AT 2. If ATI/AT 2 is sufficiently less than I, the second

mode frequency will always level off and the first mode frequency

will increase_ whereas for ATI/AT 2 sufficiently greater than I,

the first mode will level off and the second mode will increase.

For ATI/AT 2 sufficiently close to i, the relative magnitudes of

the initial imperfections will determine which mode levels off

and which mode increases.

Equations (8), (9), (]0), and (ll) and Appendix II shows that

the small amplitude vibratio1', frequency about the large amplitude

static equilibrium position is independent of p]anform shape,

boundary conditions, thickness distribution and temperature

distribution except as these factors affect the therma] buckling

parameters and the uniform temperature frequencies.

The influence of _Ol/u_o 2 remains to be determined. Experi-

mental data for quantitative comparison of theory with experiment

needs to be obtained including a more careful quantitative evaiu-

ation of arbitrary initial imoerfection than is given in Refer-

ence 2. Further, the essentially second order purturbation on

the linear theory presented herein should be evaluated as to its

range of validity by comparison to experimental data obtained



under carefully controlled conditions.

Ap__Dendlxl

The I i are nine integrals of known functions over the plate

surface and are known quantities from the linear solution.
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Appendix II

The equations of motion are:

O r r2
Os _ _flo ]

"J1o+ + _,[i rl o_ +._rl(¢z_¢iz)P,_ =

e,

¢ r r_ I
2 + -I( 2 2 10

co r r _ -Oi) ]2-2 + _ s + ¢[ 1 2 ¢i 2 r_=_-_-_o:_9-

Assume:

0 o + 0i

¢o + _i

Substitute:

c¢
+ (s O + _)3 +

r

[¢O + _][l
r 1

+ _i

2

@i +

F

_2.((_¢, + ¢)2
r 1

,o

r
c¢ + (s o + ¢)3 + [so + ¢][i 2
_2 r2 *i

+ --_-((c_+ _)2 _ Oi)2
r2

110 ] = ¢o + ¢i

Neglect all 2nd and higher order terms in c and neglect 2eO/_ and

2e¢/¢ compareO to unity. Subtract away the static deflection

equation _n each case to obtain:



e_ F I r 2
2 + r2(¢__¢_) I0 ]_ + 2 -- _¢_¢ = 02 + [i .... + 3_2 - _i

_o I F I r I = q_ _ F1

_¢ r r I r]: 2 + ___( 2 2 " Ii0 _ + 2 Y¢_ =
.... _ -_i) ....... _¢ r2 ¢

0

Assume that the small amplitude vib_'.ation will be simple harmonic

(experimental evidence supports this assumption). The result of

setting the determinant of the coefficients equal to zero is the

frequency equation,

°'g2il,2 2  'g2
_i Cl ) + 16 _Ol

Cl +-[(c2 _22o _-2o_2_2] }

where :

r h
= 2 + (¢2

CI i-- + 3_ 2 - ¢i FIF1

Ii0

r
= .... + 3_. 2 + rl(_2

c2 i F2 - ¢i F2

For most practical plates the frequency of the second mode is

much greater than that of the first mode. Thus, the square of the

ratio, mol/mo2, may be assflmed to be much smaller than unity caus-

ing the last term in the frequency equation to become negligibly

small.

vanishes.

Note, also, that if either Y or ¢ are zero, this term

The frequency equation then becomes,

_-[_Z2:! _ I _gl -- _°21_..i,2 - _{C2 + _2 CI + (C 2 2
CI)}

02 _o2

lq



from which:

(,.+)2 _++Ii+o__+,:0.,

(++)++= .-, C2
2 0+++-22

Appendix III

The thermal loading term, F, occurs as:

(8)

(9)

r = atT(x,y,_)(q x + Oy)dxdy

Assume that the surface temperature function T(x_y,w) may be

written relative to some reference value AT
ref or:

T(x,y,T) = AT cf(_ ) f(x,y)

Thus:

and

Thus:

Also:

r = ATrefII_t f(x,y)(q x + Cy)dxdy

Fcritical = ATre f criticalIiat f(x,y)(a x + Oy)dxdy

r ATre f

Pcritical ATref(critical)

_0



1.

•

•

•

rl

F 2

ATref(critical) first mode ATI

ATref(critical)second mode AT2
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Fig. i. Response of Uncoupled Modes, Ref. 2

Fig. 2. Initial Plate Shape, Ref. 2

Fig. 3. Frequency Response, Ref. 2

Fig. 4. Frequency Response With Coupling

Fig. 5. Frequency Response With Coupling

Fig. 6.

Fig. 7.

Frequency Response With Coupling

Frequency Response With Coupling

Fig. 8. Frequency Response With Coupling

Fig. 9. Frequency Response With Coupling

Fig. 10. Frequency Response With Coupling
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